Controlled surface-flaw-initiated fracture in reaction-bonded Si₃N₄

R. R. WILLS, M. G. MENDIRATTA

Systems Research Laboratories, Inc, 2800 Indian Ripple Road, Dayton, Ohio, USA

J. J. PETROVIC*

Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, USA

Reproducible controlled surface flaws were introduced in reaction-bonded Si_3N_4 by Knoop microhardness indentation. Fracture was initiated at a single suitably oriented flaw on the tensile surface of a four-point bend specimen, and the stress required to propagate the controlled flaw catastrophically was used to calculate the critical stress intensity factor K_{1C} from standard fracture-mechanics formulae for semi-elliptical surface flaws in bending. K_{1c} was unchanged up to 1200° C, but values above this temperature together with those at room temperature after vacuum annealing were reduced approximately 25%. This reduction is thought to be due to reaction with oxygen concentrations present in the vacuum "atmosphere" rather than to a change in material properties. Although flaw "healing" was observed for annealing in air, it was accompanied by a decrease in fracture stress. It is suggested that this is due to volume mismatch between $Si₃N₄$ and the oxidation product, cristobalite, which introduces tensile stresses in the matrix material.

1. Introduction

Recently, a fracture-mechanics technique has been developed which employs a small semi-elliptical surface flaw produced by a Knoop micro-hardness indentation [1]. A single flaw introduced into the tensile surface of a conventional four-point bend specimen initiates fracture because it is the worst flaw in the specimen. The critical stress intensity factor K_{IC} can then be calculated from a knowledge of the flaw dimensions and fracture stress using fracture-mechanics analyses for semi-elliptical surface flaws in bending.

This technique has been applied previously in order to obtain both room and high-temperature K_{IC} values for hot-pressed Si_3N_4 [1] and hotpressed SiC [2]. In the present investigation this technique has been extended to analyse the fracture behaviour of a fine-grained, porous ceramic - reaction-bonded $Si₃N₄$ (NC-350 grade, Norton Co, Worcester, Mass). Since Washburn and Baumgartner [3] have reported that the light-grey surface layer on this material in the as-fired condition affects its properties, this layer was removed on the tensile face of each specimen prior to the introduction of the flaw. The current investigation thus represents an evaluation of the matrix material itself.

2. Experimental procedure

The NC-350 reaction-bonded $Si₃N₄$ (density 2.52 g cm⁻³) was obtained in the form of rectangular bars $5.080 \text{ cm} \times 0.6350 \text{ cm} \times 0.3175 \text{ cm}$. The grey as-fired surface layer on one side of each test bar was removed by diamond grinding, and the ground surface was then polished to a 600-grit finish. A single 2600g Knoop microhardness indentation was placed in the centre of the tensile surface with a microhardness tester (Wilson Instrument Division of ACCO, Bridgeport, Conn). The long diagonal of the identation was aligned perpendicular to the tensile-stress direction. Bars were fractured in four-point bending at a crosshead speed of 5.08×10^{-3} cm min⁻¹ with the bend test-fixture described in [1]. High-temperature

* Present address: University of California, Los Alamos Scientific Laboratories, Los Alamos, New Mexico 87545, USA.

tests were conducted in vacuum (1.3 to $6.5 \times$ 10^{-7} atm) using a Brew furnace (Richard D. Brew Co, Concord, NH) mounted on an Instron testing machine (Instron Corp, Canton, MA). The hightemperature tests were carried out after each specimen had been at the test temperature for 5 min. The dimensions of the flaw were obtained from the fracture surface of specimens by light microscopy.

3. Calculation of the critical stress intensity factor K_{1c}

A flaw will grow catastrophically when the stress intensity K_I reaches a critical value K_{IC} . For a surface flaw in bending, K_I is given by [4]

$$
K_{\rm I} = \sigma M (\pi a/Q)^{1/2} \tag{1}
$$

where σ is the maximum outer-fibre tensile stress, a is the flaw depth, and M and Q are numerical factors related to flaw and specimen geometry. M is calculated from the ratio of flaw depth to specimen thickness $[5]$ and

$$
Q = \Phi^2 - 0.212 \, (\sigma/\sigma_{\rm ys})^2, \tag{2}
$$

where σ_{ys} is the tensile yield stress and 0.212 $(\sigma/\sigma_{\rm vs})^2$ is a plastic-zone correction factor. This factor is considered to be insignificant in the present investigation, and thus $Q = \Phi^2$ where

$$
\Phi = \int_0^{\pi/2} [\sin^2 \phi + (a/c)^2 \cos^2 \phi]^{1/2} d\phi
$$
 (3)

where $2c$ is the flaw length. This integral is tabulated in standard mathematical tables.

4. Results and Discussion

4.1. Flaw dimensions and room-temperature fracture stress

The profile of a 2600 g Knoop flaw on the fracture surface of a bend specimen is shown in Fig. 1. The flaw is semicircular in shape and has the dimensions given in Table I. In general, the flaws in the NC-350 were more difficult to observe than those in the hot-pressed $Si₃N₄ [1]$. The results of room-temperature fracture strengths for the as-received and indented specimens are shown in Table II. Considerable scatter in room-temperature strengths was observed for the as-recieved specimens as well as for specimens with the surface layer removed. However, upon introduction of a controlled surface flaw, an appreciable decrease in scatter was observed. This attainment of better reproducibility in fracture-length values makes this

Figure 1 Profile of 2600 g Knoop flaw in NC-350 Si_3N_4 .

2c (length at surface) (mm)	Coefficient of variation	(mm)	a (depth) Coefficient of variation
0.252	2.47%	0.127	6.6%

TABLE II Room temperature fracture stresses

technique particularly advantageous in the study of the effects of fabrication procedure and environment on the strength of structural ceramics [1, 2, 61.

4.2. Variation of K_{1C} with temperature and effect of residual stress

The effect of temperature and residual stress on K_{IC} is shown in Fig. 2. The lower values labeled K_{IN} refer to the residual-stress effect which will be discussed later in this section. K_{IC} (average value $1.87 \text{ MN m}^{-3/2}$ at room temperature) was unchanged at 1200° C but at 1400 and 1500° C was approximately 20% lower. K_{IC} values found by this technique for HS-130 $Si₃N₄$ [1] and

Figure 2 Effect of temperature and residual stress upon K_{IC} .

NC-203 SiC [2] were somewhat higher, 4.65 and 3.90 MN m^{-3/2}, respectively. The variation in $K_{\rm IC}$ values for these three materials can be analysed in terms of the plane-strain expression for K_{IC} for surface flaws in bending [4, 7]

$$
K_{\rm IC} = \left[\frac{2\gamma E}{1 - \nu^2}\right]^{1/2},\qquad(4)
$$

where γ = fracture-surface energy, E = elastic modulus, and ν = Poisson's ratio. The γ values calculated using this equation are shown in Table III. The difference in K_{IC} values of NC-350 $Si₃N₄$ and NC-203 SiC is due mainly to the much higher elastic modulus of SiC, whereas the considerably higher value of K_{IC} for HS-130 Si₃N₄ is due largely to the three-fold increase in γ .

Room-temperature values of K_{IC} for hotpressed $Si₃N₄$ [1] and hot-pressed SiC [2] determined by this technique were originally found to be significantly lower than those obtained by the

TABLE III Fracture mechanics data for $Si₃N₄$ and SiC

	$HS-130$	$NC-203$	NC-350
E (GN m ⁻²)	$313*$	$452*$	$160*$
$K_{\rm IC}$ (MN m ^{-3/2})	4.65	3.90	1.87
υ	$0.29*$	$0.168*$	$0.26*$
γ (J m ⁻²)	31.64	16.35	10.20
From [8]			

double torsion method. The reason for this was shown to be the presence of residual tensile stress produced in the vicinity of the flaw tip during the identation process, Vacuum annealing at elevated temperature or removal of \sim 0.020 mm of material from the tensile face of bend bars prior to fourpoint bending yielded values of K_{IC} that were in good agreement with double-torsion values. A similar effect is evident for reaction-bonded $Si₃N₄$ (see Fig. 2); the lower values labelled K_{IN} being calculated from the fracture stress required to break the specimen at the flaw after indentation but without any surface grinding. In order to obtain correct K_{IC} values, the surface-layerremoval method was used to relieve the residual stress introduced by the indenter, the thin surface layer being removed by diamond grinding followed by hand polishing using a range of abrasive papers down to 600 grit. Since there is an appreciable difference between K_{IN} and K_{IC} , it is useful to calculate the magnitude of the residual stress.

For the "as-indented" specimen

$$
K_{\rm IN} = M(\pi a/Q)^{1/2} \sigma_{\rm M},\tag{5}
$$

where $\sigma_{\bf M}$ is the measured fracture stress. Assuming the residual stress acting upon the flaw tip to be additive to the applied stress,

$$
K_{\rm IC} = M(\pi a/Q)^{1/2} (\sigma_{\rm M} + \sigma_{\rm R}). \tag{6}
$$

Combining Equations 5 and 6 yields

$$
\sigma_{\mathbf{R}} = (K_{\mathbf{IC}} - K_{\mathbf{IN}})/M(\pi a/Q)^{1/2}.
$$
 (7)

Using Equation 7, the residual stress introduced as a result of the indentation process is calculated to be 51.9 MN m^{-2} which is of similar magnitude to values for HS-130 Si₃N₄ (107 MN m⁻²) and NC-203 SiC (35.4 MN m^{-2}). The significance of these values is not known at this time, but they presumably reflect the different amounts of complex deformation which each material has undergone during the indentation process.

4.3, Effect of vacuum annealing on roomtemperature K_{IC}

The indented test bars were annealed in vacuum $(1.3 \times 10^{-9} \text{ atm})$ at 1200° C for 1 h prior to fracturing in four-point bending at room temperature. In each instance the sample broke at the flaw. K_{IC} was calculated from the fracture stress and flaw dimensions as described earlier. For three samples K_{IC} was found to be 1.369, 1.508 and 1.590 MN $\text{m}^{-3/2}$. These values are lower than for unannealed specimens (Fig, 2). Again no change in flaw dimensions was observed, indicating that the reduction in K_{IC} is due to a decrease in strength of the as-flawed material resulting from annealing.

4.4. Effect of annealing in air on roomtemperature strength

The effect of air annealing on the room-temperature strength of 2600g indented samples is tabulated in Table IV for three annealing conditions. In all cases fracture did not occur at the flaw, which can consequently be considered to have healed as a result of oxidiation. Similar

TABLE IV Effect of air annealing on room temperature strength

Room-temperature fracture stress $(MN m^{-2})$	
112.6	
118.5	
169.7	
165.1	
144.3	
166.8	
146.8	
90.8	

behaviour has been observed in hot-pressed SiC [2]. More importantly, in all cases the fracture stress did not return to the initial value: of 252.4 $MN \, m^{-2}$ as would be expected upon healing of the flaw, but remained substantially reduced, ranging from 90.8 to 169.7 MN m^{-2} .

Washburn and Baumgartner [3] measured the effect of oxidation upon the room-temperature strength of both ground and as-fired surfaces of NC-350 Si₃N₄. After oxidation at 1200° C for 100h the strength dropped 51% for the as-fired material; however, when 0.038 mm of material was removed after oxidation, the strength returned to its original value. In contrast, the ground specimens exhibited only a 4% decrease in strength. Under these oxidation conditions they found internal oxidation to be occurring rather than extensive oxide-scale formation on the surface of the material. The as-fired material gained 1.9% weight and the oxide layer was found to consist mainly of crystobalite. The ground specimens gained only 0.9%, and no cristobalite was found in the oxide layer. In the present investigation the oxidation also occurred mainly internally, the oxide scale being only $2 \mu m$ thick for oxidation at 1200° C for 100 h or at 1400° C for 1 h. However, in contrast to the findings of Washburn and Baumgartner [3], cristobalite was found on the ground surface of all air-annealed specimens, which suggests that the decrease in fracture stress is associated with the formation of cristobalite. Attempts to regain the initial strength by grinding 0.051, 0.254 and 0.381mm thick surface layers from the tensile surface after oxidation were unsuccessful. The fracture-stress values did not increase to the initial value of 235 MN m^{-2} but were in the range 158 to 169 MN m^{-2} . Therefore, the internal oxidation must have occurred at greater depths, and in view of the porous nature of this material probably extended completely through the test bars.

Calculations based upon the chemical reaction $(Si₃N₄ + 3O₂ = 3SiO₂ + 2N₂)$ and the densities of $Si₃N₄$ and $SiO₂$ show that the formation of cristobalite at high temperatures on the surface of $Si₃N₄$ grains will leave them under a tensile stress due to the volume mismatch between matrix and oxide (the densities being $Si₃N₄ = 3.2$ g cm⁻³ and cristobalite = 2.27 g cm⁻³ for the high-temperature form and 2.32 g cm^{-3} for the low-temperature form). Upon cooling through the cristobalite allotropic transformation at \sim 250 \degree C, some slight

reduction in these stresses would be expected, but probably not enough to alleviate them altogether. Thus, the presence of a thin oxide layer around the individual grains of the matrix material acts in much the same way as the residual stress induced by the Knoop indentation in lowering the necessary applied fracture stress to break the material at the critical flaw.

In view of the extreme sensitivity of the strength of reaction-bonded Si₃N₄ to oxidation, it seems **possible that the decrease in strength of indented** samples tested in vacuum at 1400 and 1500°C, **as well as those tested at room temperature after** vacuum annealing at 1200°C is due to low but **finite oxygen concentration present in the vacuum "atmosphere" rather than to changes in material properties.**

Acknowledgement

This work was supported in part under USAF Contract F33615-75-C- 1005.

References

- 1. J.J. PETROVIC, L. A. JACOBSON, P. K. TALTY **and** A. K. VASUDEVAN, J. *Amer. Ceram. Soc.* 58 (1975) 113.
- 2. J. J. PETROVIC and L. A. JACOBSON, *ibid* 59 (1976) 34.
- 3. M.E. WASHBURN and M. R. BAUMGARTNER, **in "Ceramics for High Performance Applications"** (Brook **Hill, Chestnut Hill, Massachusetts,** 1974) p. 479.
- 4. R.M. KEAYS, **Structures and Materials Report** 343 **(Department of Supply, Australian Defense Scientific Service, Aeronautical Research Laboratories,** April 1973).
- 5. R.C. SHAH and A. S. KOBAYASHI, **in "Stress Analysis and Growth of** Cracks" (Amer. Soc. **for Testing Materials,** Spec. Tech. Publ. No. 513, 1972) p. 321.
- 6. J.J. PETROVIC and L. A. JACOBSON,in **"Ceramics for High Performance Applications" (Brook Hill, Chestnut Hill, Massachusetts,** 1974) p. 397.
- 7. G.R. IRWIN, J. *AppL Mech.* 29 (1962) 651.
- 8. J.W. EDINGTON, D. J. ROWCLIFFE and J. L. HENSHALL, *PowderMet. Int.* 7 (1975) 82.

Received 31 October and accepted 25 November 1975.